Outdoor 8 Woodland Learning

Teachers Learning Pack

Carbon storage calculator

Activity plans
Worksheets

Resource Cards

Carbon storage calculator

Objectives

By the end of this activity learners will be able to:

- measure how much carbon is stored in trees
- wage and identify different types of trees
- describe how trees combat climate change by storing carbon

Activity plan

Equipment and resources

- Information note - Carbon
- Resource cards - Carbon equivalent

Worksheet - Carbon calculator

- Clipboards
- Pencils

Tape measures

- Calculators
- Tree ID sheets, books or apps

What to do

Trees take in carbon dioxide from the atmosphere and store it as carbon in their trunk, roots and leaves. Approximately half of the dry weight of a tree is carbon. This means that trees are a carbon store and can help us to reduce the effects of climate change.
During this activity learners will identify tree species, work out approximate ages, calculate the dry weight and the amount of carbon stored in a tree.
Follow the steps on the Worksheet - Carbon calculator for up to three different trees as follows:
I Tree species
Use identification sheets, books or apps to identify the species of tree.
2 Measure the circumferences
Use a tape measure to measure the circumference of the tree at chest height (1.3 metres up the trunk from the ground).

3 Age of tree

Calculate the age of the tree based on the given growth rates.
4 Dry weight
Use the conversion table to convert the circumference of the tree into the dry weight.
5 Carbon stored
Use the dry weight to calculate how much carbon is stored in the tree.
6 How do we produce this amount of carbon?
Use the Resource cards - Carbon equivalent, to find real life examples of how we create the amount of carbon which is stored in the tree

Plenary

Relate findings for everyday examples of how we produce carbon.
Discuss what can we do to reduce the amount of carbon we produce?

Key questions

- How do we produce carbon?

How are trees connected to our carbon emissions?
What is a carbon store?

- How much carbon is stored in your tree?

What can you personally do to reduce the amount of carbon released into the atmosphere?

Adapting for clifferent needs/abilities

Less able

More able

- Leader to complete the worksheet with whole group for one tree only.
- Break down each stage of the worksheet and check results and understanding before moving on to the next stage.

Follow up activity/extension

- Learners calculate the carbon footprint of their household, whole school etc.
- Create an action plan to reduce the carbon footprint calculated.

Try our other tree and woodland learning resource:

- Activity plan - Seed dispersal
- Activity plan - Tree planting
- Activity plan - Carbon footprint

Aclditional information

See Information note - Carbon

Adclitional resources

Looking for more learning resources, information and data? Please visit https://www.owlscotland.org and www.outdoorlearningdirectory.com Alternative format, large print or another language, please contact:
Scottish.Forestry@forestry.gov.scot

00

Carbon storage calculator

As trees grow they take in carbon dioxide from the atmosphere and store it as carbon in their trunk, roots and leaves. Approximately half of the dry weight of a tree is carbon. This means that trees are a carbon store and can help us to reduce the effects of climate change

Follow the instructions to complete the table and calculate the amount of carbon that has been stored in up to 3 different size trees.

nstructions

1 Species
Use identification sheets, books or apps to identify the species of tree.
2 Circumference
Use a tape measure to measure the distance all the way around the trunk of the tree at a height of 1.3 metres (approximately chest height) up from the ground.

3 Age
Divide the circumference of the tree by the growth rate to calculate the age. Trees grow at different speeds with the circumference increasing at an average of 2.5 cm per year.

Growth rates

- Holly and yew -1.25 cm per yea
- Oak - 1.88 cm per year

Ash, beech, elm and hazel -2.5 cm per year
Sycamore -2.75 cm per year

- Pine and spruce -3.13 cm per year

NB If the species of your tree is not listed use the average growth rate of 2.5 cm per year
4 Dry weight
Use the conversion table on next page to convert the circumference of the tree into the dry weight.

Dry weight conversion table

Cireumference (cm)	Dry weight (kg)
1.5	0.009
2.5	0.04
5	0.23
10	1.4
20	9
30	27
40	82
50	106
75	310
100	668
125	1208
150	1964
175	3253
200	4221

ऽ Carbon stored
Half of the dry weight of the tree is carbon, therefore you need to divide the answer for the dry weight by two. This tells you how much carbon is stored in the tree

xample

The circumference of a tree is 150 cm . Looking at the table this means that its dry weight
is about 1964 kg . Dividing this by two tells us that the tree is storing 982 kg of carbon.
Circumference converted into dry weight $\div \underline{2}=$ carbon stored
6 How do we produce this amount of carbon?
Use the carbon equivalent resource cards to find out how we create the amount of arbon which is stored in the tree.

		Tree A	Tree B	Tree C
1	Species			
2	Circumference (cm)			
3	Age (circumference : growth rate)			
4	Dry weight (kg) (see conversion table)			
5	Carbon stored (kg)			
6	How do we produce this amount of carbon? (see Resource cards: Carbon equivalents)			

Aciclitional resources

Looking for more learning resources, information and data? Please visit https://www.owlscotland.org and www.outdoorlearningdirectory.com Alternative format, large print or another language, please contact:
Scottish.Forestry@forestry.gov.scot

Additional resources
Forests for the future:

www.forestsforthefuture.co.uk

Forests for the Future is designed for upper primary learners to explore the local and global issues surrounding climate change and sustainable development. There is a focus on the role that trees, forests, and people can play in reducing and/or mitigating any negative impacts.
The Forests for the Future resource seeks to encourage teachers and their learners outdoors - using cal

Outdoor 8 Woodland Learning

Teachers Learning Pack

Carbon storage calculator

Activity plans
Worksheets

Resource Cards

